Synthesis and Structure-Activity Relationships of 3,8-Diazabicyclo[4.2.0]octane Ligands, Potent Nicotinic Acetylcholine Receptor Agonists

Jennifer M. Frost (née Pace), ${ }^{*}, \dagger$ William H. Bunnelle, ${ }^{\dagger}$ Karin R. Tietje, ${ }^{\dagger}$ David J. Anderson, ${ }^{\dagger}$ Lynne E. Rueter, ${ }^{\dagger}$ Peter Curzon, ${ }^{\dagger}$ Carol S. Surowy, ${ }^{\dagger}$ Jianquo Ji, ${ }^{\dagger}$ Jerome F. Daanen, ${ }^{\dagger}$ Kathy L. Kohlhaas, ${ }^{\dagger}$ Michael J. Buckley, ${ }^{\dagger}$ Rodger F. Henry, ${ }^{\dagger}$ Tino Dyhring, ${ }^{\dagger}$ Philip K. Ahring, ${ }^{\ddagger}$ and Michael D. Meyer ${ }^{\dagger}$
Neuroscience Research, Abbott Laboratories, Abbott Park, Illinois 60064, and NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup, Denmark

Received July 19, 2006
A series of potent neuronal nicotinic acetylcholine receptor (nAChR) ligands based on a 3,8-diazabicyclo[4.2.0]octane core have been synthesized and evaluated for affinity and agonist efficacy at the human high affinity nicotine recognition site (h $\alpha 4 \beta 2$) and in a rat model of persistent nociceptive pain (formalin model). Numerous analogs in this series exhibit picomolar affinity in radioligand binding assays and nanomolar agonist potency in functional assays, placing them among the most potent nAChR ligands known for the h $\alpha 4 \beta 2$ receptor. Several of the compounds reported in this study (i.e., 24, 25, 28, 30, 32, and 47) exhibit equivalent or greater affinity for the h $\alpha 4 \beta 2$ receptor relative to epibatidine, and like epibatidine, many exhibit robust analgesic efficacy in the rat formalin model of persistent pain.

Introduction

Neuronal nicotinic acetylcholine receptors (nAChRs) have become exciting new targets for medicinal research. One of the most studied areas of interest for this receptor family recently has been that of analgesia, but the nAChRs have also been investigated as potential targets to treat Alzheimer's and Parkinson's diseases, schizophrenia, and depression. ${ }^{1}$ The analgesic effects of nicotine (1) were first reported in $1932 .{ }^{2}$ The much later discovery that the extremely potent antinociceptive activity of epibatidine (2), isolated from the skin of a poisonous Ecuadorian tree frog, was the result of the interaction of epibatidine with nAChRs renewed interest in selectively targeting these receptors for the treatment of pain. ${ }^{3}$ While epibatidine was found to be an extremely potent analgesic, its poor side effect profile at or near effective analgesic doses (paralysis, seizures, death, etc.) precluded its development for clinical use. ${ }^{3}$ These side effects of epibatidine are thought to stem in large part from the activity of epibatidine at the ganglionic and neuromuscular nAChRs. ${ }^{4}$ Analogs of epibatidine and nicotine with improved side effect profiles have been sought. One such compound discovered in our labs is ABT-594 (3; Figure 1). ${ }^{5}$

Compound $\mathbf{3}$ is a potent nAChR agonist that is active in a broad range of preclinical models of nociceptive and neuropathic pain. ${ }^{5,6}$ Compound 3 is more selective for neuronal nAChRs (vs ganglionic and neuromuscular nAChRs) than is epibatidine and does have an improved therapeutic profile in in vivo models relative to epibatidine. However, $\mathbf{3}$ exhibits only modest selectivity among the neuronal nAChR subtypes (Table 1). ${ }^{7 a}$ Generally, nAChR subtype selectivity is thought to be key to improving the therapeutic margin between analgesia and side effects (i.e., gastrointestinal and cardiovascular effects). ${ }^{8,16}$ Specifically, it is thought that agonist activity at the $\alpha 4 \beta 2$ receptor subtype, found mainly in the CNS, is responsible for the observed analgesic activity, ${ }^{9}$ while activity at the $\alpha 3 \beta 4$

[^0]

1 (nicotine)
Figure 1.
subtype, abundantly expressed in the peripheral nervous system, is the main cause of side effects. ${ }^{10}$

Compound 3 (ABT-594) has been the starting point for a variety of more rigid structural variants making use of an NCCX structural motif (bolded in Structure A) where X has been N, O, C, and S (Scheme 1). ${ }^{11}$ One such series is the 3,8 diazabicyclo[4.2.0]octane series that includes regioisomers B (3- N regioisomeric series) and \mathbf{C} ($8-N$ regioisomeric series). The synthesis and pharmacological profile of this series will be discussed herein.

Chemistry

All of the $\alpha 4 \beta 2$ agonists described in this paper were generated by the Buchwald-Hartwig coupling ${ }^{12}$ of the appropriate enantiomerically pure diamine with a halopyridine (Scheme 2). The diamine syntheses and the general coupling procedures are discussed below.

The synthesis of the chiral diamines 4 and 5 and their enantiomers (6 and 7, respectively) began as shown in Scheme 3. The commercially available ethyl 1-benzyl-3-oxo-4-piperidine carboxylate hydrochloride (8) was first converted into the corresponding tert-butyl carbamate 9 via removal of the N -benzyl protecting group, followed by reaction of the resulting free amine with di-tert-butyl dicarbonate. A solution of 9 and $(R)-\alpha$-methylbenzylamine in toluene was refluxed under a Dean-Stark trap to generate the enamine 10. Reduction of the double bond with sodium triacetoxyborohydride ${ }^{13}$ yielded an approximately $1.5: 1$ mixture of the $(3 S, 4 S)$-cis-isomer, 11, and the $(3 R, 4 R)$-cis-isomer, 12. At this point, the stereochemistry of the products was assumed based on literature precedence for the predominance of the cis-isomer. The cis-configuration was confirmed by X-ray analysis of the enantiomer of the reduced product, 14 (ent-14, see Experimental Section). This mixture

Table 1.

	$\left[{ }^{3} \mathrm{H}\right]-\mathrm{cytisine}$ $\mathrm{p} K_{\mathrm{i}} \pm \mathrm{SEM}$	$\left[{ }^{3} \mathrm{H}\right]-\mathrm{cytisine}$ $K_{\mathrm{i}}(\mathrm{nM})$	$\mathrm{h} \alpha 4 \beta 2 \mathrm{EC}_{50}(\mathrm{nM})$ $(\mathrm{SEM}$ range)	$\mathrm{h} \alpha 4 \beta 2 \max$	$\mathrm{h} \alpha 3 \beta 4 \mathrm{EC}_{50}(\mathrm{nM})$ $(\mathrm{SEM} \mathrm{range})$	$\mathrm{h} \alpha 3 \beta 4 \mathrm{max}$

Scheme 1

Scheme 2

Scheme 3

Scheme 4

was then reduced with lithium aluminum hydride to afford the corresponding alcohols, $\mathbf{1 3}$ and $\mathbf{1 4}$.

Initially, the two cis-isomers, $\mathbf{1 3}$ and $\mathbf{1 4}$, were separated by arduous flash column chromatography and were carried on separately. In Scheme 4, this initial route is elaborated using isomer ent-13, which was formed as described above, but using (S)- α-methylbenzylamine. It should be noted that when (S)- $\alpha-$ methylbenzylamine was used, the ($3 R, 4 R$)-isomer predominated, whereas use of (R) - α-methylbenzylamine resulted in larger amounts of the $(3 S, 4 S)$-isomer. As shown in Scheme 4, the α-methylbenzyl group was cleaved via hydrogenolysis to give amine 15. Reaction with 2-nitrobenzenesulfonyl chloride gave the intermediate bisnosylate, which upon treatment with 5\%

Scheme 5

aqueous NaOH in ethanol, cyclized to sulfonamide 16. ${ }^{14}$ At this point, the nitrobenzenesulfonyl group was removed with thiophenol and $\mathrm{K}_{2} \mathrm{CO}_{3}{ }^{14}$ to give diamine core 4 .

Alternatively, to obtain isomer $\mathbf{5}$, which allowed coupling at N 3 , the t-butylcarbamate was cleaved, and the resulting amine was protected as the benzyl carbamate 17 . The N-nitrobenzenesulfonyl group was then removed ${ }^{14}$ to give the free amine, which was reprotected in situ to give the corresponding t-butylcarbamate. Hydrogenation then resulted in the free amine isomer 5.

While this route was effective in generating initial quantities of core diamines $\mathbf{4}$ and 5 , as well as their enantiomers ($\mathbf{6}$ and 7), the separation of diastereomers 13 and 14 (and ent-13 and ent-14) was difficult, and the protecting group manipulations were cumbersome. It was thought that if alcohols $\mathbf{1 3}$ and $\mathbf{1 4}$ could be cyclized directly, prior to removal of the chiral auxiliary, the presence of said auxiliary on the rigid, cyclized product might facilitate separation of the two cis-isomers. Furthermore, this route would allow for fewer protecting group manipulations.

Three primary questions needed to be addressed with the proposed route. First, could the alcohol oxygen be selectively activated in the presence of the basic, acyclic nitrogen? Second, if the selective O-activation was possible, would the resulting intermediate cyclize in the presence of the large α-methylbenzyl substituent? Finally, would this route facilitate the separation of the two cis-isomers?
To address the first question, single isomer $\mathbf{1 3}$ was treated with methanesulfonyl chloride and pyridine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Scheme 5). Mesylation occurred exclusively on oxygen, and furthermore, attempted purification of the monomesylate via silica gel chromatography resulted in isolation of both the mesylate 19 and the cyclized product $\mathbf{1 8}$. Ultimately, it was found that the cyclized product $\mathbf{1 8}$ could be obtained directly by addition of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ to the mesylation reaction mixture.

Scheme 6

Scheme 7

Scheme 8

Scheme 9

As it had now been demonstrated that both selective activation and the subsequent cyclization were favorable, the only remaining question was that of improving the separation of the diastereomers. To that end, a mixture of isomers $\mathbf{1 3}$ and $\mathbf{1 4}$ was treated with methanesulfonyl chloride and $\mathrm{Et}_{3} \mathrm{~N}$ in tetrahydrofuran (Scheme 6). After the mixture had stirred for 1 h at ambient temperature, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ was added and the temperature was raised to $60^{\circ} \mathrm{C}$. After stirring at $60^{\circ} \mathrm{C}$ for 18 h , it was found that the two products $\mathbf{1 8}$ and $\mathbf{2 0}$ had readily formed and that they were easily separable via flash column chromatography. The individual isomers such as $\mathbf{1 8}$ could then be converted to either the $3-N$ accessible (7) or the $8-N$ accessible cores (6), as shown in Scheme 7. Diamine 6 was obtained directly by hydrogenolysis of $\mathbf{1 8}$, while $\mathbf{7}$ was isolated after a protecting group shuffle to give the trifluoroacetamide 21 followed by hydrogenation, protection of the resulting free amine as the t-butylcarbamate, and removal of the trifluoroacetyl group. Thus, this new route allowed the more efficient generation of large quantities of the diamine cores (4-7) than was possible with the initial synthesis.

3-N-substituted

Figure 2.
As discussed above, the diamine cores were coupled to numerous halopyridines via the Buchwald-Hartwig coupling (Scheme 8). ${ }^{12}$ Coupling of the diamine core was also carried out using 5-bromopyrimidine and 3,6-dichloropyridazine (Scheme 9).

Results and Discussion

Two main structural series were investigated and are described herein: that in which the pyridine is attached to the diamine at the 8 -position (8 - N -substituted; structure C, Figure 2) and that in which the pyridine is attached to the diamine at the 3-position (3- N -substituted; structure B, Figure 2). All compounds shown in Tables 2-4 were evaluated for affinity to the $\alpha 4 \beta 2$ binding site in the cytisine binding assay and for functional activity at the h $\alpha 4 \beta 2$ and h $\alpha 3 \beta 3$ subtypes in the FLIPR cellular assays. Selected compounds were evaluated for analgesic activity in phase 2 of the formalin flinch assay.

Background SAR. The structure-activity relationship (SAR) of the 3,8-diazabicyclo[4.2.0]octane series was primarily explored by varying the small substituents on the 5 and 6 positions of the pyridine ring (R_{1} and R_{2} in structures B and C, respectively). Previous work by ourselves and others had suggested that small groups at these positions of the pyridine were optimal for $\alpha 4 \beta 2$ ligands. ${ }^{15,16}$ Larger groups at the 5-position led to ligands with high affinity but reduced functional activity. ${ }^{16,17}$ Ligands with large (i.e., an aromatic group) substitution at the 6-position have reduced cytisine binding and $\alpha 4 \beta 2$ functional activity. ${ }^{15}$ Substitutions at the 2 or 4 positions generally resulted in reduced binding and functional activities. ${ }^{15,16,18}$ Attachment of the diamine moiety at the 3-pyridyl position has also been found to be optimal. ${ }^{19}$ In general, the pyridine ring was preferred, but the 5-pyrimidinyl and 3-pyridazinyl were also investigated in this and other series. ${ }^{16,20}$ Finally, in most cases studied, an unsubstituted nitrogen on the diamine moiety $(\mathrm{R}=\mathrm{H})$ was required for activity at the $\alpha 4 \beta 2$ receptor. ${ }^{16,21}$

SAR of the 3,8-Diazabicyclo[4.2.0]octane Ligands. As a group, the 3,8-diazabicyclo[4.2.0]octane ligands are among the most potent and efficacious compounds reported for the nAChRs. Several compounds in this series show nanomolar potency in the h $\alpha 4 \beta 2$ functional assay (i.e., 28, 30, 32, and 47) and most have subnanomolar potency in the cytisine binding assay. Many of these ligands exhibit supramaximal efficacy in the functional assays with responses on the order of 200% that of the maximal nicotine response. Several compounds (i.e., 24, $\mathbf{2 5}, \mathbf{2 8}, \mathbf{3 0}, \mathbf{3 2}$, and 47) reported here are as potent or more potent than epibatidine (2) in these assays. The specific effects on in vitro and in vivo activity with changes in pyridine substitution as well as diamine regio- and stereoselectivity are discussed below.

The most potent compounds reported in this study are from the $3-N$-substituted isomeric series (Table 2). For example, the ($1 R, 6 S$)-5,6-dibromo analog, 30, has a K_{i} of 0.014 nM in the rat cytisine binding assay and EC_{50} values of 7.8 nM (209\%) and $8.2 \mathrm{nM}(117 \%)$ in the h $\alpha 4 \beta 2$ and $h \alpha 3 \beta 4$ functional assays, respectively. As shown in Table 3, substrates in the $8-N$ -

Table 2. In Vitro Biological Activity of $3-N$-Substituted nAChRs

cmpd	stereoisomer	R_{1}	R_{2}	$\begin{gathered} {\left[{ }^{3} \mathrm{H}\right] \text {-cytisine }} \\ \mathrm{p} K_{\mathrm{i}} \pm \mathrm{SEM} \end{gathered}$	$\begin{gathered} {\left[{ }^{3} \mathrm{H}\right] \text {-cytisine }} \\ K_{\mathrm{i}}(\mathrm{nM}) \end{gathered}$	$\begin{gathered} \mathrm{h} \alpha 4 \beta 2 \mathrm{EC}_{50} \\ (\mathrm{nM}) \\ \text { (SEM range) } \end{gathered}$	h $\alpha 4 \beta 2$ max	$\begin{gathered} \mathrm{h} \alpha 3 \beta 4 \mathrm{EC}_{50} \\ (\mathrm{nM}) \\ \text { (SEM range) } \end{gathered}$	h $\alpha 3 \beta 4$ max
22	1R,6S	H	H	10.46 ± 0.08	0.035	$\begin{gathered} 71 \\ (61-82) \end{gathered}$	$171 \pm 8 \%$	$\begin{gathered} 48 \\ (44-52) \end{gathered}$	$121 \pm 4 \%$
23	1S,6R	H	H	10.23 ± 0.07	0.059	$\begin{gathered} 330 \\ (300-370) \end{gathered}$	$112 \pm 5 \%$	$\begin{gathered} 260 \\ (250-280) \end{gathered}$	$118 \pm 2 \%$
24	1R,6S	H	Cl	10.72 ± 0.08	0.019	$\begin{gathered} 13 \\ (11-15) \end{gathered}$	$114 \pm 2 \%$	$\begin{gathered} 29 \\ (26-32) \end{gathered}$	$151 \pm 10 \%$
25	1S,6R	H	Cl	10.50 ± 0.08	0.032	$\begin{gathered} 24 \\ (22-26) \end{gathered}$	$130 \pm 2 \%$	$\begin{gathered} 25 \\ (24-27) \end{gathered}$	$125 \pm 2 \%$
26	1R,6S	Br	H	10.61 ± 0.05	0.024	$\begin{gathered} 150 \\ (130-170) \end{gathered}$	$148 \pm 7 \%$	$\begin{gathered} 76 \\ (70-82) \end{gathered}$	$122 \pm 5 \%$
27	1S,6R	Br	H	10.28 ± 0.03	0.053	$\begin{gathered} 1000 \\ (850-1200) \end{gathered}$	$58 \pm 2 \%$	$\begin{gathered} 950 \\ (910-990) \end{gathered}$	$91 \pm 4 \%$
28	1R,6S	Cl	Cl	10.61 ± 0.06	0.025	$\begin{gathered} 12 \\ (9.7-14) \end{gathered}$	$221 \pm 15 \%$	$\begin{gathered} 9.9 \\ (8.3-12) \end{gathered}$	$132 \pm 7 \%$
29	1S,6R	Cl	Cl	10.57 ± 0.04	0.027	$\begin{gathered} 82 \\ (67-100) \end{gathered}$	$79 \pm 5 \%$	$\begin{gathered} 110 \\ (100-120) \end{gathered}$	$111 \pm 6 \%$
30	1R,6S	Br	Br	10.86 ± 0.03	0.014	$\begin{gathered} 7.8 \\ (6.1-9.9) \end{gathered}$	$209 \pm 14 \%$	$\begin{gathered} 8.2 \\ (7.4-9.1) \end{gathered}$	$117 \pm 2 \%$
31	1S,6R	Br	Br	10.62 ± 0.08	0.024	$\begin{gathered} 76 \\ (67-87) \end{gathered}$	$86 \pm 3 \%$	$\begin{gathered} 110 \\ (100-120) \end{gathered}$	$100 \pm 3 \%$
32	1R,6S	CH_{3}	Cl	10.51 ± 0.03	0.031	$\begin{gathered} 7.2 \\ (5.4-9.6) \end{gathered}$	$207 \pm 15 \%$	$\begin{gathered} 7.2 \\ (6.5-7.9) \end{gathered}$	$123 \pm 2 \%$
33	1S,6R	CH_{3}	Cl	10.44 ± 0.07	0.037	$\begin{gathered} 47 \\ (38-58) \end{gathered}$	$90 \pm 6 \%$	$\begin{gathered} 71 \\ (68-74) \end{gathered}$	$103 \pm 3 \%$
34	1R,6S	CN	H	9.92 ± 0.12	0.12	$\begin{gathered} 1900 \\ (1200-2900) \end{gathered}$	$112 \pm 6 \%$	$\begin{gathered} 1000 \\ (590-1700) \end{gathered}$	$127 \pm 8 \%$
35	1S,6R	CN	H	10.19 ± 0.08	0.065	$\begin{gathered} 1900 \\ (1500-2400) \end{gathered}$	$76 \pm 6 \%$	$\begin{gathered} 490 \\ (460-520) \end{gathered}$	$116 \pm 2 \%$
36	1R,6S	OMe	H	10.42 ± 0.11	0.038	$\begin{gathered} 130 \\ (120-160) \end{gathered}$	$178 \pm 17 \%$	$\begin{gathered} 180 \\ (170-190) \end{gathered}$	$103 \pm 3 \%$
37	1S,6R	OMe	H	9.74 ± 0.04	0.18	$\begin{gathered} 2700 \\ (2000-3600) \end{gathered}$	$35 \pm 4 \%$	$\begin{gathered} 4500 \\ (4400-4700) \end{gathered}$	$86 \pm 2 \%$
38	1R,6S	H	OMe	9.01 ± 0.08	0.98	$\begin{gathered} 2200 \\ (1900-2600) \end{gathered}$	$96 \pm 6 \%$	$\begin{gathered} 1100 \\ (1040-1140) \end{gathered}$	$88 \pm 4 \%$
39	1S,6R	H	OMe	8.57 ± 0.058	2.7	$\begin{gathered} 4980 \\ (4330-5730) \end{gathered}$	$54 \pm 1 \%$	$\begin{gathered} 2400 \\ (2300-2450) \end{gathered}$	$93 \pm 2 \%$
40	1R,6S	OEt	H	10.28 ± 0.06	0.052	$\begin{gathered} 620 \\ (570-680) \end{gathered}$	$116 \pm 3 \%$	$\begin{gathered} 124 \\ (117-131) \end{gathered}$	$103 \pm 1 \%$
41	1S,6R	OEt	H	9.80 ± 0.01	0.16	$\begin{gathered} 1350 \\ (300-6200) \end{gathered}$	$18 \pm 4 \%$	$\begin{gathered} 2800 \\ (2700-2900) \end{gathered}$	$86 \pm 2 \%$
42	1S,6R	CH_{3}	H	10.19 ± 0.07	0.064	$\begin{gathered} 650 \\ (500-830) \end{gathered}$	$54 \pm 4 \%$	$\begin{gathered} 1400 \\ (1300-1500) \end{gathered}$	$87 \pm 2 \%$
43	1R,6S	H	NO_{2}	8.83 ± 0.07	1.5	$\begin{gathered} 100 \\ (94-110) \end{gathered}$	$196 \pm 7 \%$	$\begin{gathered} 390 \\ (360-410) \end{gathered}$	$119 \pm 3 \%$
44	1S,6R	H	NO_{2}	8.61 ± 0.08	2.4	$\begin{gathered} 110 \\ (94-120) \end{gathered}$	$114 \pm 6 \%$	$\begin{gathered} 830 \\ (780-880) \end{gathered}$	$98 \pm 4 \%$
45	1R,6S	OMe	Br	10.57 ± 0.02	0.027	$\begin{gathered} 21 \\ (18-25) \end{gathered}$	$217 \pm 12 \%$	$\begin{gathered} 8.0 \\ (7.3-8.8) \end{gathered}$	$120 \pm 2 \%$
46	1S,6R	OMe	Br	10.16 ± 0.04	0.069	$\begin{gathered} 360 \\ (260-480) \end{gathered}$	$40 \pm 3 \%$	$\begin{gathered} 160 \\ (150-180) \end{gathered}$	$108 \pm 3 \%$
47	1R,6S	CN	Br	10.57 ± 0.05	0.027	$\begin{gathered} 6.1 \\ (5.0-7.5) \end{gathered}$	$215 \pm 19 \%$	$\begin{gathered} 4.4 \\ (3.5-5.6) \end{gathered}$	$133 \pm 3 \%$
48	1S,6R	$\begin{aligned} & \mathrm{HO}_{\mathrm{N}} \mathrm{~N} \\ & \text { 権 }_{\mathrm{NH}} \end{aligned}$	H	10.21 ± 0.07	0.062	$\begin{gathered} 180 \\ (160-210) \end{gathered}$	$194 \pm 19 \%$	$\begin{gathered} 5700 \\ (5300-6100) \end{gathered}$	$99 \pm 3 \%$

substituted series are also relatively potent but generally have lower affinities at the tested receptors than the $3-\mathrm{N}$-substituted regioisomers. In all cases where direct comparisons between the two regioisomeric series can be made (i.e., $\mathbf{2 2}$ vs $\mathbf{4 9}, \mathbf{2 5}$ vs 52, etc.), the $3-N$-substituted regioisomers are the more potent in h $\alpha 4 \beta 2$ binding and functional assays.

Within the $3-N$-substituted regioisomeric series (Table 3), there is a pronounced stereochemical effect, with the $1 R, 6 S$ absolute stereochemistry generally imparting higher binding
affinity and greater functional potency than the $1 S, 6 R$ enantiomers, as exemplified by compounds 22 and 23, 30 and 31, and $\mathbf{3 6}$ and 37 . In addition to greater potency, compounds with the $1 R, 6 S$ stereochemistry are characterized by significantly greater agonist efficacy in the h $\alpha 4 \beta 2$ functional assay, with many analogs exhibiting 200% of the maximal response elicited by nicotine (see 28, 30, 32, 43, 47). By contrast, compounds of the $1 S, 6 R$ stereochemistry generally exhibit maximal agonist efficacies comparable to nicotine.

Table 3. In Vitro Biological Activity of $8-N$-Substituted nAChRs

cmpd	stereoisomer	R_{1}	R_{2}	$\left[{ }^{3} \mathrm{H}\right]$-cytisine $\mathrm{p} K_{\mathrm{i}} \pm$ SEM	$\begin{gathered} {\left[{ }^{3} \mathrm{H}\right] \text {-cytisine }} \\ K_{\mathrm{i}}(\mathrm{nM}) \end{gathered}$	$\begin{gathered} \mathrm{h} \alpha 4 \beta 2 \mathrm{EC}_{50} \\ \text { (nM) } \\ \text { (SEM range) } \end{gathered}$	h $\alpha 4 \beta 2$ max	$\mathrm{h} \alpha 3 \beta 4 \mathrm{EC}_{50}$ (nM) (SEM range)	h $\alpha 3 \beta 4$ max
49	$1 R, 6 S$	H	H	9.91 ± 0.10	0.12	$\begin{gathered} 410 \\ (380-440) \end{gathered}$	$105 \pm 2 \%$	$\begin{gathered} 1700 \\ (1600-1700) \end{gathered}$	$98 \pm 4 \%$
50	$1 S, 6 R$	H	H	8.95 ± 0.02	1.1	$\begin{gathered} 1400 \\ (1300-1500) \end{gathered}$	$84 \pm 3 \%$	$\begin{gathered} 1540 \\ (1460-1630) \end{gathered}$	$97 \pm 3 \%$
51	1R,6S	H	Cl	9.92 ± 0.08	0.12	$\begin{gathered} 37.4 \\ (33.6-41.5) \end{gathered}$	$94 \pm 6 \%$	$\begin{gathered} 1390 \\ (1270-1530) \end{gathered}$	$129 \pm 3 \%$
52	$1 S, 6 R$	H	Cl	9.10 ± 0.04	0.80	$\begin{gathered} 216 \\ (181-258) \end{gathered}$	$102 \pm 6 \%$	$\begin{gathered} 1520 \\ (1290-1790) \end{gathered}$	$93 \pm 9 \%$
53	1R,6S	Cl	Cl	9.93 ± 0.08	0.12	$\begin{gathered} 271 \\ (252-291) \end{gathered}$	$60 \pm 2 \%$	$\begin{gathered} 4110 \\ (3930-4290) \end{gathered}$	$69 \pm 2 \%$
54	$1 S, 6 R$	Cl	Cl	9.52 ± 0.06	0.3	$\begin{gathered} 176 \\ (164-190) \end{gathered}$	$127 \pm 3 \%$	$\begin{gathered} 339 \\ (316-364) \end{gathered}$	$103 \pm 2 \%$
55	1R,6S	CH_{3}	Cl	10.37 ± 0.08	0.043	$\begin{gathered} 76.1 \\ (67.3-86.0) \end{gathered}$	$103 \pm 6 \%$	$\begin{gathered} 1910 \\ (1790-2030) \end{gathered}$	$91 \pm 3 \%$
56	$1 S, 6 R$	CH_{3}	Cl	9.62 ± 0.03	0.24	$\begin{gathered} 134 \\ (116-156) \end{gathered}$	$142 \pm 9 \%$	$\begin{gathered} 298 \\ (276-322) \end{gathered}$	$103 \pm 4 \%$
57	1R,6S	OMe	Br	8.85 ± 0.16	1.4	$\begin{gathered} 1690 \\ (1500-1900) \end{gathered}$	$65 \pm 4 \%$	$\begin{gathered} 2980 \\ (2810-3150) \end{gathered}$	$84 \pm 3 \%$
58	$1 S, 6 R$	OMe	Br	10.07 ± 0.060	0.085	$\begin{gathered} 200 \\ (187-214) \end{gathered}$	$120 \pm 2 \%$	$\begin{gathered} 202 \\ (184-220) \end{gathered}$	$98 \pm 4 \%$
59	$1 R, 6 S$	CN	H	9.30 ± 0.05	0.50	$\begin{gathered} 2190 \\ (1890-2540) \end{gathered}$	$64 \pm 4 \%$	$\begin{gathered} 2560 \\ (2180-3000) \end{gathered}$	$91 \pm 8 \%$
60	$1 S, 6 R$	CN	H	8.58 ± 0.15	2.6	$\begin{gathered} 1930 \\ (1590-2350) \end{gathered}$	$83 \pm 3 \%$	$\begin{gathered} 5560 \\ (5220-5920) \end{gathered}$	$71 \pm 4 \%$
61	1R,6S	CN	Br	10.15 ± 0.01	0.070	$\begin{gathered} 109 \\ (96.2-124) \end{gathered}$	$104 \pm 4 \%$	$\begin{gathered} 794 \\ (757-832) \end{gathered}$	$88 \pm 2 \%$
62	$1 S, 6 R$	CN	Br	9.52 ± 0.01	0.3	$\begin{gathered} 172 \\ (155-192) \end{gathered}$	$157 \pm 5 \%$	$\begin{gathered} 238 \\ (226-252) \end{gathered}$	$100 \pm 3 \%$
63	1R,6S	$\mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}$	Br	8.55 ± 0.04	2.8	$\begin{gathered} 1490 \\ (1320-1680) \end{gathered}$	$75 \pm 4 \%$	$\begin{gathered} 23300 \\ (22500-24200) \end{gathered}$	$73 \pm 2 \%$
64	$1 S, 6 R$	$\mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}$	Br	8.08 ± 0.02	8.4	$\begin{gathered} 340 \\ (317-365) \end{gathered}$	$133 \pm 6 \%$	$\begin{gathered} 7460 \\ (7170-7770) \end{gathered}$	$90 \pm 1 \%$
65	1R,6S	OMe	H	8.36 ± 0.08	4.4	$\begin{gathered} 7690 \\ (6010-9580) \end{gathered}$	$44 \pm 5 \%$	$\begin{gathered} 63500 \\ (47400-85200) \end{gathered}$	$47 \pm 1 \%$
66	$1 S, 6 R$	OMe	H	9.25 ± 0.02	0.56	$\begin{gathered} 1105 \\ (890-1370) \end{gathered}$	$104 \pm 4 \%$	$\begin{gathered} 4360 \\ (4140-4580) \end{gathered}$	$88 \pm 2 \%$

In the 8 - N-substituted series (Table 4), many of the compounds investigated showed little difference in affinity between the $1 R, 6 S$ and $1 S, 6 R$ isomers. However, in the cases of the most potent compounds, which includes the unsubstituted compounds ($\mathbf{4 9}$ vs $\mathbf{5 0}$) and many 6 -halogenated compounds ($\mathbf{5 1}$ vs $\mathbf{5 2}, \mathbf{5 5}$ vs 56, and $\mathbf{6 1}$ vs 62), the $1 R, 6 S$ isomers exhibited higher affinities than their $1 S, 6 R$ counterparts. Of the compounds investigated, only the $1 S, 6 R$ isomers with 5 -methoxy groups showed increased affinity relative to the corresponding $1 R, 6 S$ isomers ($\mathbf{5 7}$ vs $\mathbf{5 8}$ and $\mathbf{6 5}$ vs $\mathbf{6 6}$).

For the sake of clarity, the discussion of the effects of pyridine substitution will be limited to the most potent stereochemical and regiochemical series, specifically, the $(1 R, 6 S)-3-N$-substituted series. The SAR trends exhibited in this series are generally consistent among the other regio- and stereochemical series.

As discussed above, previous work had suggested that for $\alpha 4 \beta 2$ nAChR activity, small substituents on the 5 and 6 positions of the pyridine ring (R_{1} and R_{2}, respectively) were optimal and larger substitutions at the 2 or 4 positions were detrimental. ${ }^{15-17}$ The unsubstituted pyridine, 22, is a very potent compound at both $\alpha 4 \beta 2\left(K_{\mathrm{i}}=0.035 \mathrm{nM}, \mathrm{EC}_{50}=70.7 \mathrm{nM}\right)$ and $\alpha 3 \beta 4\left(\mathrm{EC}_{50}\right.$ $=47.9 \mathrm{nM})$. However, as has been previously reported, halogens in the 6-pyridyl position lead to increased potency at nAChRs, ${ }^{16}$ and this trend was found to be true in the case of the 3,8-diazabicyclo[4.2.0]octane ligands as well. The analogs with

6-halogen substitution $(\mathbf{2 4}, \mathbf{2 8}, \mathbf{3 0}, \mathbf{3 2}, \mathbf{4 5}$, and 47) all exhibit subnanomolar binding affinities and low nanomolar potencies in the functional assays. None of these compounds is selective for $\alpha 4 \beta 2$ over $\alpha 3 \beta 4 \mathrm{nAChRs}$, with the exception of 24 , which shows only a 2 -fold preference for $\alpha 4 \beta 2$ over $\alpha 3 \beta 4$. Other substitutions in the 6-pyridyl position include the methoxy (38) and nitro (43) moieties, both of which lead to decreased activity in the binding and functional assays relative to 22.

Ligand 26 is the only case in the stereo- and regiochemical series being discussed that has 5-halo substitution without accompanying 6 -halo substitution. Although the binding affinities are comparable between 5-H derivative 22 and the 5-bromo derivative 26, compound 22 is a more potent agonist in the $\alpha 4 \beta 2$ and $\alpha 3 \beta 4 \mathrm{nAChR}$ functional assays. A comparison of the $5-\mathrm{H}$, 6- Cl ligand $\mathbf{2 4}$ with $\mathbf{2 8}$ and $\mathbf{3 0}$, the $5,6-\mathrm{diCl}$ and $5,6-\mathrm{diBr}$ ligands, respectively, demonstrates that the presence of halogens in the 5 and 6 positions of the pyridine is not detrimental to $\alpha 4 \beta 2$ or $\alpha 3 \beta 4$ activity.

Substitution at the 5-pyridyl position without a concomitant 6-halo group (34, 36, 40) led to reduced $\alpha 4 \beta 2$ and $\alpha 3 \beta 4$ activities relative to the 5,6-unsubstituted ligand, 22. However, with 6-halo substitution, several groups were well tolerated in the 5 -pyridyl position ($\mathbf{3 2}, \mathbf{4 5}, \mathbf{4 7}$), with $\alpha 4 \beta 2$ and $\alpha 3 \beta 4$ activities equal to or better than the unsubstituted ligand, 22. Overall, substitutions on the pyridine ring could have a large

Table 4. In Vitro Biological Activity of Pyrimidine and Pyridazine nAChRs

Figure 3. Dose responses of 28 and 36 in the rat formalin model. *The asterisks denote statistical significance.
effect on potencies in the in vitro assays but, in this series, they do not appear to have a substantial effect on selectivity between $\alpha 4 \beta 2$ and $\alpha 3 \beta 4$ subtypes. These same general trends are also apparent in the $(1 S, 6 R)-3-N$-substituted series and the $8-N$ substituted series.

As shown in Table 4, heterocycles other than pyridine were also briefly investigated. The two $3-N$-substituted isomers (68 and 69) and one $8-N$-substituted isomer (67) of the $3,8-$ diazabicyclo[4.2.0]octane pyrimidines studied had reduced potency in the functional assays relative to their pyridine analogs (67 vs 50,68 vs 22 , and 69 vs 23). These compounds were also not subtype-selective (h $\alpha 4 \beta 2$ vs h $\alpha 3 \beta 4$) nor were they active in the rat formalin screen. Because of these results, the pyrimidines were not investigated further. The two stereoisomers of the $3-N$-substituted diazabicyclo[4.2.0]octane-6-chloropyridazine (70 and 71) were made. In vitro, these two compounds were less potent than their 6-chloropyridine analogs, 24 and 25 . The $(1 R, 6 S)$-isomer, 70, was still relatively potent and did show some activity in vivo, but overall, offered no advantages over the pyridine analogs.

In Vivo Results. The $3-N$-substituted series exhibits a good correlation between activity in the in vitro assays and activity
in the rat formalin model, although it should be noted that while our functional assays use the human $\alpha 4 \beta 2$ and $\alpha 3 \beta 4$ receptors, our in vivo studies were performed in rats. For example, the $1 R, 6 S$ enantiomer 28 has good activity in the $\alpha 4 \beta 2$ FLIPR assay $\left(\mathrm{EC}_{50}=11.8 \mathrm{nM}, 221 \%\right.$ response $)$ and, as shown in Figure 3, has a good dose-response curve in the formalin model while its enantiomer 29 , which was weaker in the in vitro assays $(\alpha 4 \beta 2$ $\mathrm{EC}_{50}=82.1 \mathrm{nM}, 79 \%$ response) exhibited only modest activity in the in vivo model (55% reduction in flinches at $19 \mu \mathrm{~mol} /$ Kg , data not shown). The same is true for ligands $\mathbf{3 0}$ (99\% reduction in flinches at $6.2 \mu \mathrm{~mol} / \mathrm{Kg}$) and $31(26 \%$ reduction in flinches at $19 \mu \mathrm{~mol} / \mathrm{Kg})$, as well as $34(80 \%$ reduction in flinches at $6.2 \mu \mathrm{~mol} / \mathrm{Kg}$) and $\mathbf{3 5}$ (no reduction in flinches at 19 $\mu \mathrm{mol} / \mathrm{Kg})$. The relatively less potent analog $36\left(\alpha 4 \beta 2 \mathrm{EC}_{50}=\right.$ $134 \mathrm{nM}, 178 \%$ response) also elicited a good dose-response in the formalin model (Figure 3), while its enantiomer $37(\alpha 4 \beta 2$ $\mathrm{EC}_{50}=2670 \mathrm{nM}, 35 \%$ response) was inactive in the in vivo model.

Overall, in the $8-N$-substituted series there appears to be less of a correlation between in vitro and in vivo results. The $(1 R, 6 S)-$ 6 -chloro analog 51 is more potent in the $\alpha 4 \beta 2$ FLIPR assay $\left(\mathrm{EC}_{50}=37.4 \mathrm{nM}, 94 \%\right.$ response $)$ than its enantiomer $52(\alpha 4 \beta 2$

Figure 4. Dose response of $\mathbf{5 2}$ in the rat formalin model. *The asterisks denote statistical significance.
$\mathrm{EC}_{50}=216 \mathrm{nM}, 102 \%$ response). Likewise, 51 exhibits 50\% reduction in flinches in the rat formalin model at low doses $(0.19 \mu \mathrm{~mol} / \mathrm{Kg})$, while 52 is less potent (Figure 4). In contrast, although 55 is more potent at $\alpha 4 \beta 2\left(\mathrm{EC}_{50}=76.1 \mathrm{nM}, 103 \%\right.$ response) than its enantiomer $56\left(\alpha 4 \beta 2 \mathrm{EC}_{50}=134 \mathrm{nM}, 142 \%\right.$ response), $\mathbf{5 5}$ is inactive in the rat formalin model, while 56 causes a 75% reduction in the number of flinches at $19 \mu \mathrm{~mol} /$ Kg (data not shown). Overall, the $8-\mathrm{N}$-substituted series is not as active in the in vivo model as the $3-\mathrm{N}$-substituted series, which is consistent with the reduced in vitro activity of the $8-\mathrm{N}$ substituted series relative to the $3-\mathrm{N}$-substituted series.

It should be noted that while many of the tested compounds were shown to be active in the rat formalin model, most active compounds also exhibited side effects, which included prostration, seizures, ataxia, and dyspnea. While the behavioral side effects of some compounds likely impacted the ability of the animals to flinch, they cannot solely account for the observed analgesic effects. For example, multiple compounds showed mild and/or transient side effects that were not apparent at the time of analgesia testing, while others continued to show analgesic efficacy when tested at lower doses that did not induce behavioral side effects (i.e., 30, 33, 36, and 42). Interestingly, the opposite could also be demonstrated, that is, administration of several of the reported compounds resulted in side effects without any accompanying analgesia at the tested doses (maximum of $19 \mu \mathrm{~mol} / \mathrm{Kg}$; i.e., 44, 49, 53, 55, 61, and 71). Thus, analgesic effects and behavioral side effects were dissociable for these analogs, as has been previously described for epibatidine, which also exhibits significant side effects. ${ }^{22}$

As discussed above, many of the nAChR agonists prepared on this diazabicyclooctane scaffold are extremely potent, and many are active in the rat formalin in vivo screen. Several compounds (i.e., $\mathbf{2 4}, \mathbf{2 5}, \mathbf{2 8}, \mathbf{3 0}, \mathbf{3 2}$, and 47) had equal or higher binding affinity and $\alpha 4 \beta 2$ functional potency than does epibatidine, 2. It is thought that agonist activity at the $\alpha 4 \beta 2$ receptor subtype is primarily responsible for analgesic activity, ${ }^{9}$ while activation of the $\alpha 3 \beta 4$ subtype leads to side effect liabilities. ${ }^{10}$ If this is true, the likely conclusions that can be drawn from these results are either that a further improvement of h $\alpha 4 \beta 2$ versus h $\alpha 3 \beta 4$ functional selectivity is required, or that the h $\alpha 3 \beta 4$ subtype is not the sole cause of side effects in the in vivo screen. Also, it should be noted that while our functional assays use the human $\alpha 4 \beta 2$ and $\alpha 3 \beta 4$ receptors, our in vivo studies were performed in rats. Finally, the required level of selectivity necessary to eliminate all in vivo side effects is not currently known.

Experimental Section

Biological Assays. Rat Cytisine Binding Assay. Binding to a desensitized state of nAChRs (predominantly $\alpha 4 \beta 2$) was evaluated by measuring displacement of $\left[{ }^{3} \mathrm{H}\right]$-cytisine from rat brain homogenate $(n \geq 3) .{ }^{23}$

Functional Assays. HEK cell lines expressing the $\alpha 4 \beta 2$ and $\alpha 3 \beta 4$ subunit combinations were used in the determination of functional nAChR agonist activity by measuring intracellular calcium changes using the fluorometric imaging plate reader (FLIPR) system (Molecular Devices, Sunnydale, CA). The cell line was obtained from NeuroSearch (Ballerup, Denmark). Cells were plated at densities of $25000-50000$ cells/well in DMEM (GIBCO), supplemented with 10% FBS (GIBCO) in 96-well, clear-bottom, black-walled plates (Corning Costar) manually precoated with poly-D-lysine (Sigma, $75 \mu \mathrm{~L} /$ well of $0.01 \mathrm{~g} / \mathrm{L}$ solution $\geq 30 \mathrm{~min}$) and allowed to incubate for $24-48 \mathrm{~h}$ at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ in a humidified environment. After aspirating off the media, the cell lines were incubated in the dark at room temperature for $\sim 0.75-1 \mathrm{~h}$ with $2-4 \mu \mathrm{M}$ Fluo-4 AM calcium indicator dye (Molecular Probes, Eugene, OR) dissolved in 0.1 to $0.2 \% \mathrm{v} / \mathrm{v}$ of DMSO (Sigma, U.K.) in NMDG ringer buffer (in mM: 140 NMDG, $5 \mathrm{KCl}, 1 \mathrm{MgCl}_{2}, 10$ HEPES, $10 \mathrm{CaCl}_{2}, \mathrm{pH}=7.4$). Cells were placed in the FLIPR and $50 \mu \mathrm{~L}$ of $3 \times$ stock concentrations of test compounds or buffer only prepared in the same NMDG ringer buffer were added. Raw fluorescence data were corrected by subtracting fluorescence values from wells that received buffer only additions. Peak fluorescent values were determined over the range of drug exposure using FLIPR software and expressed as a percentage of the reference peak response for the positive control of $100 \mu \mathrm{M}$ nicotine and exported for analysis using Microsoft Excel and GraphPad Prism (San Diego, CA). Data were fitted using a single sigmoidal function in GraphPad determining EC_{50} and maximum responses and expressed as means $\pm \operatorname{SEM}(n)$, SEM is the standard error of the means and an $n=6$ constitutes two replicates per plate across three plates.

Rat Formalin Model of Persistent Pain. Following a 30 min habituation period to the testing room and cages, rats were injected i.p. ($1 \mathrm{~mL} / \mathrm{kg}$) with either the test compound or its vehicle control. Five minutes later, $50 \mu \mathrm{~L}$ of a 5% formalin solution was injected subcutaneously into the dorsal aspect of one of the hind paws. Immediately after formalin injection, the cages were placed on a suspended rack with mirrors positioned below permitting the experimenter to observe the rat from all angles. From 30 to 50 min after the injection of formalin, there is a marked increased in nocifensive behaviors such as flinching, licking, and biting of the injected paw, an increase which has been termed phase 2 or the persistent pain phase of the model. During this 20 min period, rats were observed for the occurrence of nocifensive behaviors. Four rats were run simultaneously, and the experimenter observed each rat for one 15 s observation period during each 1 min interval throughout the 20 min of phase 2 . The nocifensive responses were recorded and summed for statistical analyses. ${ }^{8}$

Chemistry. Proton NMR spectra were obtained on a General Electric QE 300 or QZ 300 MHz instrument with chemical shifts (δ) reported relative to tetramethylsilane as an internal standard. Elemental analyses were performed by Robertson Microlit Laboratories. Column chromatography was carried out on silica gel 60 (230-400 mesh). Thin-layer chromatography was performed using 250 mm silica gel 60 glass-backed plates with F_{254} as indicator. The X-ray crystal structures were obtained on a Bruker SMART system. All materials were commercially available and were obtained from Aldrich unless otherwise specified.

3-Oxo-piperidine-1,4-dicarboxylic Acid 1-tert-Butyl Ester 4-Ethyl Ester (9). A mixture of commercially available ethyl- N -benzyl-3-oxo-4-piperidinecarboxylate hydrochloride (8;75.4 g, 0.25 $\mathrm{mol})$, di- t-butyl dicarbonate ($58.5 \mathrm{~g}, 0.27 \mathrm{~mol}$), $\mathrm{Et}_{3} \mathrm{~N}(36 \mathrm{~mL}, 0.26$ $\mathrm{mol})$, and $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}\left(7.5 \mathrm{~g}, 50 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ in 660 mL of EtOH was put under 60 psi of H_{2} and was shaken for 25 min . The mixture was then filtered, and the filtrate was concentrated under reduced pressure to provide the title compound, which was used in the next
step without further purification. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $1.32(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 2.29(\mathrm{~m}, 3 \mathrm{H}), 3.5(\mathrm{t}, J=5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.0(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{DCI} / \mathrm{NH}_{3}\right)$ $m / z 272(\mathrm{M}+\mathrm{H})^{+}, 289\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$.

5-[(1R)-1-Phenyl-ethylamino]-3,6-dihydro-2H-pyridine-1,4-dicarboxylic Acid 1-tert-Butyl Ester 4-Ethyl Ester (10). Compound 9 (72 g, 0.265 mol), (R) - α-methylbenzylamine ($35.9 \mathrm{~mL}, 0.279$ mol), and 750 mL of toluene were combined in a 1 L , round-bottom flask equipped with a Dean-Stark trap. The mixture was refluxed for 36 h , with water being removed via the Dean-Stark trap. After cooling to ambient temperature, the solution was concentrated and redissolved in EtOAc. Filtration through silica gel and Celite diatomaceous earth gave the crude title compound (10), which was carried on directly to the next reaction. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~m}, 9 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~m}$, $1 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~m}, 1 \mathrm{H}), 7.24$ $(\mathrm{m}, 5 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{DCI} / \mathrm{NH}_{3}\right) m / z, 375(\mathrm{M}+\mathrm{H})^{+}$.
(3S,4S)-1-t-Butyl 4-Ethyl (cis)-3-\{[(1R)-1-Phenylethyl]amino\}-1,4-piperidinedicarboxylate (11) and (3R,4R)-1-t-Butyl 4-Ethyl (cis)-3-\{[(1R)-1-Phenylethyl]amino\}-1,4-piperidinedicarboxylate (12). To a mixture of $\mathbf{1 0}(0.265 \mathrm{~mol}), \mathrm{NaBH}(\mathrm{OAc})_{3}(281 \mathrm{~g}$, 1.33 mol), and 200 g of $4 \AA$ powdered molecular sieves in 900 mL of toluene in a 3-neck round-bottom flask equipped with an internal thermometer, mechanical stirrer, and addition funnel at 0 ${ }^{\circ} \mathrm{C}$ was added acetic acid ($303 \mathrm{~mL}, 5.3 \mathrm{~mol}$) dropwise via the addition funnel, with the internal temperature being maintained below $5{ }^{\circ} \mathrm{C}$. After the addition was complete, the mixture was allowed to warm to ambient temperature and stir for 16 h . The reaction was filtered and concentrated under reduced pressure to remove most of the acetic acid. The residue was dissolved in 750 mL of EtOAc , and 500 mL of saturated, aqueous NaHCO_{3} solution was added slowly to neutralize the residual acid. The layers were separated, and the aqueous layer was extracted with $2 \times 100 \mathrm{~mL}$ of EtOAc. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give a $1.5: 1$ mixture of the title compounds (11 and 12), which were carried on to the next reaction without separation or further purification. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.37(\mathrm{~m}, 13 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 1.98$ $(\mathrm{s}, 3 \mathrm{H}), 2.81(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~m}, 1 \mathrm{H})$, $4.15(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 5 \mathrm{H})$; MS $\left(\mathrm{DCI} / \mathrm{NH}_{3}\right) \mathrm{m} / z 377(\mathrm{M}+\mathrm{H})^{+}$.
(3S,4S)-4-Hydroxymethyl-3-[(1R)-phenyl-ethylamino]-piperi-dine-1-carboxylic Acid tert-Butyl Ester (13) and (3R,4R)-4-Hydroxymethyl-3-[(1R)-1-phenyl-ethylamino]-piperidine-1-carboxylic Acid tert-Butyl Ester (14). To a slurry of $\mathrm{LiAlH}_{4}(0.292$ mol) in 1 L tetrahydrofuran at $0^{\circ} \mathrm{C}$ was added a mixture of $\mathbf{1 1}$ and $12(0.265 \mathrm{~mol})$ dropwise via addition funnel. The ice bath was removed after the addition was complete, and the mixture was stirred at ambient temperature for 1 h . The reaction was quenched by the slow addition of approximately $100 \mathrm{~g} \mathrm{Na} 2 \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ (excess). The mixture was stirred for 16 h and then was filtered, concentrated under reduced pressure, and purified via column chromatography $\left(\mathrm{SiO}_{2}, 33 \%\right.$ hexanes -EtOAc$)$ to give 76.5 g of a $\sim 1.5: 1$ mixture of cis-isomers ($\mathbf{1 3}$ and $\mathbf{1 4} ; 0.23 \mathrm{~mol}, 86 \%$). Note that the isomers ($\mathbf{1 3}$ and 14) could be separated via silica gel chromatography at this stage or more readily at a later stage (see the experimental procedures for 18 and 20). Data for 13: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H})$, $1.78(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~m}, 3 \mathrm{H}), 3.73(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~m}$, 5H); MS (DCI/ NH_{3}) m/z $335(\mathrm{M}+\mathrm{H})^{+}$. Data for 14: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.55(\mathrm{~m}, 15 \mathrm{H}), 2.72(\mathrm{~m}, 3 \mathrm{H}), 3.55(\mathrm{~m}, 2 \mathrm{H})$, $3.95(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~m}$, 5H); MS (DCI/ NH_{3}) m/z $335(\mathrm{M}+\mathrm{H})^{+}$.

5-[(1S)-1-Phenyl-ethylamino]-3,6-dihydro-2H-pyridine-1,4-dicarboxylic Acid 1-tert-Butyl Ester 4-Ethyl Ester (ent-10). Compound $9(90.4 \mathrm{~g}, 0.333 \mathrm{~mol})$ in toluene $(250 \mathrm{~mL})$ was treated with (S) - α-methylbenzylamine $(42.4 \mathrm{~g}, 0.350 \mathrm{~mol})$. The mixture was warmed to reflux with a Dean-Stark trap until the distillate was clear $(7 \mathrm{~h})$ and $\sim 7 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}$ had been collected. The mixture was concentrated under reduced pressure to provide the title compound (ent-10), which was carried on directly to the next step
without further purification. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.31$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~m}, 10 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$, $3.13(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~m}, 5 \mathrm{H}), 9.17(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{DCI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ $375(\mathrm{M}+\mathrm{H})^{+}$.
(3S,4S)-1-t-Butyl 4-Ethyl (cis)-3-\{[(1S)-1-Phenylethyl]amino\}-1,4-piperidinedicarboxylate (ent-12) and (3R,4R)-1-t-Butyl 4-Ethyl (cis)-3-\{[(1S)-1-Phenylethyl]amino\}-1,4-piperidinedicarboxylate (ent-11). Compound ent-10 ($62.3 \mathrm{~g}, 0.167 \mathrm{~mol}$), $\mathrm{NaBH}(\mathrm{OAc})_{3}$ ($150 \mathrm{~g}, 0.708 \mathrm{~mol}$), and powdered $4 \AA$ molecular sieves $(133 \mathrm{~g})$ in toluene $(730 \mathrm{~mL})$ in a 3-neck round-bottom flask equipped with a mechanical stirrer, thermometer, and addition funnel at $0^{\circ} \mathrm{C}$ was treated with acetic acid ($191 \mathrm{~mL}, 3.30 \mathrm{~mol}$) dropwise with the internal temperature being maintained below $5^{\circ} \mathrm{C}$. After the addition was complete, the ice bath was removed, and the mixture was stirred for 20 h and filtered, and the filtrate was concentrated under reduced pressure. The residue was dissolved in ethyl acetate (1 L) and quenched by slow addition of saturated, aqueous NaHCO_{3}. The layers were separated, and the aqueous layer was extracted with ethyl acetate. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered, and the filtrate was concentrated under reduced pressure to provide the product as an $\sim 1: 1.5$ mixture of the two cis-isomers, ent-12 and ent-11 ($60.0 \mathrm{~g}, 0.159 \mathrm{~mol}, 94 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.30(\mathrm{~m}, 12 \mathrm{H}), 1.49(\mathrm{~m}, 3 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.83$ $(\mathrm{m}, 1 \mathrm{H}), 2.69(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~m}, 3 \mathrm{H}), 4.18(\mathrm{~m}, 2 \mathrm{H})$, $7.27(\mathrm{~m}, 5 \mathrm{H})$; MS $\left(\mathrm{DCI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 377(\mathrm{M}+\mathrm{H})^{+}$.
(3S,4S)-4-Hydroxymethyl-3-[(1S)-phenyl-ethylamino]-piperi-dine-1-carboxylic Acid tert-Butyl Ester (ent-14) and (3R,4R)-4-Hydroxymethyl-3-[(1S)-1-phenyl-ethylamino]-piperidine-1carboxylic Acid tert-Butyl Ester (ent-13). A mixture of compounds ent-11 and ent-12 $(60.0 \mathrm{~g}, 0.159 \mathrm{~mol})$ in tetrahydrofuran $(200 \mathrm{~mL})$ was added dropwise to a mixture of lithium aluminum hydride (7.00 $\mathrm{g}, 0.175 \mathrm{~mol}, 95 \%)$ in tetrahydrofuran $(300 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After the addition was complete, the mixture was allowed to warm to ambient temperature and was quenched by slow addition of $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ (excess). The mixture was stirred for 16 h and filtered, and the filtrate was concentrated under reduced pressure. The two isomers, ent-13 and ent-14, were separated via flash column chromatography (50% ethyl acetate/hexanes) to provide two diastereomers, a more mobile diastereomer determined to be the $(3 S, 4 S)$ diastereomer (ent14; $R_{\mathrm{f}}=0.27$ in 75% ethyl acetate/hexanes, $15.0 \mathrm{~g}, 44.8 \mathrm{mmol}$, 28% yield) and a less mobile diastereomer determined to be the $(3 R, 4 R)$ diastereomer (ent-13; $R_{\mathrm{f}}=0.20$ in 75% ethyl acetate/ hexanes, $22.5 \mathrm{~g}, 67.3 \mathrm{mmol}, 42 \%$ yield). Data for ent-13: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.54(\mathrm{~m}, 4 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H})$, $2.89(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~m}$, $1 \mathrm{H}), 7.33(\mathrm{~m}, 5 \mathrm{H})$; MS $\left(\mathrm{DCI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 335(\mathrm{M}+\mathrm{H})^{+}$. Data for ent-14: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.28(\mathrm{~m}, 3 \mathrm{H}), 1.60(\mathrm{~m}$, $3 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 2.60(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~m}, 2 \mathrm{H}), 3.95$ $(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 1 \mathrm{H})$, $7.33(\mathrm{~m}, 4 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{DCI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 335(\mathrm{M}+\mathrm{H})^{+}$.

The more mobile diastereomer (ent-14) was subjected to X-ray analysis. Single crystals suitable for X-ray diffraction were grown by slow evaporation from an ethyl acetate solution. Crystal data: $\mathrm{MW}=334.46, \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}$, crystal dimensions $0.40 \times 0.20 \times$ 0.05 mm , orthorhombic, $P 2_{1} 2_{1} 2_{1}$ (\#19), $a=6.5230(13), b=$ $12.469(3), c=23.107(5) \AA, V=1879.4(6) \AA^{3}, Z=4, D_{\text {calc }}=$ $1.18 \mathrm{~g} / \mathrm{cm}^{-3}$. Crystallographic data were collected using Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71069 \AA)$. Refinement of the structure using full matrix least-squares refinement of 229 parameters on 4615 reflections with $I>2.00 \sigma(I)$ gave $R=0.062, R_{\mathrm{w}}=0.138$.
(3R,4R)-3-Amino-4-hydroxymethyl-piperidine-1-carboxylic Acid tert-Butyl Ester (15). A mixture of ent-13 (30.5 g, 0.13 mol$)$ and 6.16 g of $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \mathrm{wt} \%, 50 \%$ wet $)$ in 300 mL of $\mathrm{CH}_{3} \mathrm{OH}$ was shaken under 4 atm of H_{2} for 4 h at $50^{\circ} \mathrm{C}$. The mixture was cooled to ambient temperature, filtered, and concentrated to give 20.5 g of the title compound 15 ($89 \mathrm{mmol}, 68 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.46(\mathrm{~s}, 10 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H})$, $2.77(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~m}, 2 \mathrm{H}), 3.99$ (ddd, $J=13.3,3.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{DCI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} .231$ $(\mathrm{M}+\mathrm{H})^{+}$.
(1R,6S)-8-(2-Nitrobenzenesulfonyl)-3,8-diaza-bicyclo[4.2.0]-octane-3-carboxylic Acid tert-Butyl Ester (16). To compound 15 (20.5 g , 89 mmol) in 500 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}$ ($37.3 \mathrm{~mL}, 26.8 \mathrm{mmol}$) and 2-nitrobenzenesulfonyl chloride. The ice bath was removed, and the mixture was stirred at ambient temperature for 48 h . The reaction mixture was then concentrated under reduced pressure and was redissolved in 200 mL of EtOH and 100 mL of 5% aqueous NaOH solution. This mixture was stirred at ambient temperature for 1 h , concentrated under reduced pressure, and redissolved in EtOAc (300 mL). The layers were separated, and the aqueous layer was extracted with $3 \times 50 \mathrm{~mL}$ of EtOAc. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure, and purified via flash column chromatography (50% ethyl acetate/hexanes) to give 22.1 g of the title compound, 16 ($55.6 \mathrm{mmol}, 62 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.41(\mathrm{~m}, 9 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~m}$, $1 \mathrm{H}), 3.19(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{~m}, 2 \mathrm{H}), 4.59$ $(\mathrm{m}, 1 \mathrm{H}), 7.81(\mathrm{~m}, 3 \mathrm{H}), 8.03(\mathrm{~m}, 1 \mathrm{H})$; MS $\left(\mathrm{DCI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 398(\mathrm{M}$ $+\mathrm{H})^{+}$.
(1R,6S)-3,8-Diaza-bicyclo[4.2.0]octane-3-carboxylic Acid tertButyl Ester (4). To $\mathbf{1 6}(22.1 \mathrm{~g}, 55.6 \mathrm{mmol})$ in 100 mL of DMF was added $\mathrm{PhSH}(7.4 \mathrm{~mL}, 72.3 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(23.8 \mathrm{~g}, 0.172$ $\mathrm{mol})$. This mixture was stirred at ambient temperature for 50 h and then was filtered and concentrated under reduced pressure. Purification via column chromatography ($9: 1: 0.1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} /$ $\mathrm{NH}_{4} \mathrm{OH}$) gave 5 g of the title compound ($4 ; 23.6 \mathrm{mmol}, 42 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H}), 1.95$ $(\mathrm{m}, 1 \mathrm{H}), 2.81(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H})$, $3.73(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H})$; MS $\left(\mathrm{DCI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 213(\mathrm{M}+\mathrm{H})^{+}$.
(1R,6S)-8-(2-Nitro-benzenesulfonyl)-3,8-diaza-bicyclo[4.2.0]-octane-3-carboxylic Acid Benzyl Ester (17). To 16 (2.82 g, 7.1 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was treated with trifluoroacetic acid (20 mL), and the solution was stirred at room temperature for 1 h . The mixture was concentrated under reduced pressure, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and treated with triethylamine $(1.29 \mathrm{~mL}, 9.2 \mathrm{mmol})$ and benzyl chloroformate $(1.21 \mathrm{~mL}, 8.5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 16 h and then washed successively with $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL}), 1 \mathrm{~N} \mathrm{NaOH}(10$ mL), and brine (10 mL). The organic phase was dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure to provide the title compound $\mathbf{1 7}(2.23 \mathrm{~g}, 5.2 \mathrm{mmol}, 73 \%$ yield $)$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 1.82(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 2.66$ $(\mathrm{m}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=14.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~m}$, $2 \mathrm{H}), 4.13(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 6 \mathrm{H}), 7.74$ $(\mathrm{m}, 2 \mathrm{H}), 8.00(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{DCI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 449\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$.
(1R,6S)-3,8-Diaza-bicyclo[4.2.0]octane-8-carboxylic Acid tertButyl Ester (5). Compound 17 ($2.23 \mathrm{~g}, 5.2 \mathrm{mmol}$) in DMF (20 $\mathrm{mL})$ was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}(2.37 \mathrm{~g}, 17.2 \mathrm{mmol})$ and thiophenol $(0.80 \mathrm{~mL}, 7.8 \mathrm{mmol})$ and allowed to stir at room temperature for 16 h . The mixture was further treated with di- t-butyl dicarbonate $(2.27 \mathrm{~g}, 10.4 \mathrm{mmol})$ and was allowed to stir for an additional 16 h at room temperature. The mixture was diluted with diethyl ether $(150 \mathrm{~mL})$, washed with $5 \times 20 \mathrm{~mL}$ of $1: 1$ brine and $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (3% $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide the intermediate ($1 R, 6 S$)-3,8-diaza-bicyclo[4.2.0]octane-3,8-dicarboxylic acid 3-benzyl ester 8-tertbutyl ester ($1.5 \mathrm{~g}, 43 \mathrm{mmol}, 83 \%$ yield, MS $\left(\mathrm{DCI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 347$ $\left.(\mathrm{M}+\mathrm{H})^{+}\right)$.

Intermediate ($1 R, 6 S$)-3,8-diaza-bicyclo[4.2.0]octane-3,8-dicarboxylic acid 3-benzyl ester 8-tert-butyl ester ($1.5 \mathrm{~g}, 4.3 \mathrm{mmol}$) in methanol (20 mL) was treated with $10 \% \mathrm{Pd} / \mathrm{C}(0.10 \mathrm{~g})$, and the mixture was stirred under $\mathrm{H}_{2}(1 \mathrm{~atm})$ at ambient temperature for 2 h . The mixture was filtered, concentrated under reduced pressure, and purified via column chromatography $\left(9: 1: 0.1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} /\right.$ $\left.\mathrm{NH}_{4} \mathrm{OH}\right)$ to provide the title compound, $5(0.49 \mathrm{~g}, 2.3 \mathrm{mmol}, 53 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H})$, $2.00(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{dd}$, $J=14.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=8.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{ddd}, J=7.5,4.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{DCI} / \mathrm{NH}_{3}\right)$ $m / z 213(\mathrm{M}+\mathrm{H})^{+}$.
(1S,6R)-8-[(1R)-1-Phenyl-ethyl]-3,8-diaza-bicyclo[4.2.0]octane-3-carboxylic Acid tert-Butyl Ester (18) and (1R,6S)-8-[(1R)-1-Phenyl-ethyl]-3,8-diaza-bicyclo[4.2.0]octane-3-carboxylic Acid tert-Butyl Ester (20). To the mixture of compounds 13 and 14 ($76.5 \mathrm{~g}, 0.23 \mathrm{~mol}$) in 1.1 L of tetrahydrofuran at $0^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(95.8 \mathrm{~mL}, 0.687 \mathrm{~mol})$, followed by methanesulfonyl chloride $(23 \mathrm{~mL}, 0.30 \mathrm{~mol})$. The ice bath was removed after the additions were complete, and the reaction was allowed to warm to ambient temperature and stirred for $1 \mathrm{~h} . \mathrm{Cs}_{2} \mathrm{CO}_{3}(\sim 100 \mathrm{~g})$ was added, and the mixture was warmed to $60^{\circ} \mathrm{C}$ and stirred for 16 h . The reaction was cooled to ambient temperature and filtered, and the filtrate was washed with $2 \times 100 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}$. The layers were separated, and the aqueous layer was extracted $2 \times 100 \mathrm{~mL}$ of EtOAc. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The material was purified, and the isomers were separated via column chromatography (50% hexanes/EtOAc) to give 30.7 g of the major isomer (less mobile), $(1 S, 6 R)$ - 3,8 -diaza-bicyclo[4.2.0] octane-3-carboxylic acid tert-butyl ester, $\mathbf{1 8}$ ($97 \mathrm{mmol}, 42 \%$), and 16.5 g of the minor isomer (more mobile), ($1 R, 6 S$)-3,8-diaza-bicyclo[4.2.0]-octane-3-carboxylic acid tert-butyl ester, 20 (52 mmol, 23%). Data for 18: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 1.19$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~m}, 9 \mathrm{H}), 1.84(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~m}, 1 \mathrm{H})$, $2.62(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{~m}$, $1 \mathrm{H}), 3.83$ (ddd, $J=12.6,8.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~m}, 5 \mathrm{H})$; MS (DCI/ $\left.\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 317(\mathrm{M}+\mathrm{H})^{+}$. Data for 20: ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.21(\mathrm{~m}, 3 \mathrm{H}), 1.48(\mathrm{~m}, 9 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~m}$, $1 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{~m}, 2 \mathrm{H}), 3.91$ (m, 2H), $7.17(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~m}, 4 \mathrm{H})$; MS $\left(\mathrm{DCI} / \mathrm{NH}_{3}\right) m / z 317(\mathrm{M}$ $+\mathrm{H})^{+}$.
(1S,6R)-3,8-Diaza-bicyclo[4.2.0]octane-3-carboxylic Acid tertButyl Ester (6). A mixture of $\mathbf{1 8}(12.6 \mathrm{~g}, 39.8 \mathrm{mmol})$ and wet $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \mathrm{wt} \%, 3.25 \mathrm{~g})$ was shaken under a 60 psi atmosphere of H_{2} for 2.1 days at $50{ }^{\circ} \mathrm{C}$. The mixture was then filtered and concentrated to give 7.6 g of the title compound, $\mathbf{6}(35.8 \mathrm{mmol}$, 90% yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.76(\mathrm{~m}$, $1 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=8.5,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.24(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=14.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ $(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{DCI} / \mathrm{NH}_{3}\right)$ $\mathrm{m} / \mathrm{z} 213(\mathrm{M}+\mathrm{H})^{+}$.
(1S,6R)-2,2,2-Trifluoro-1-[8-((1R)-1-phenyl-ethyl)-3,8-diaza-bicyclo[4.2.0]oct-3-yl]-ethanone (21). To a solution of 18 (10 g, 31.6 mmol) in 35 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ was added 20 mL of trifluoroacetic acid. The ice bath was removed, and the mixture was stirred at ambient temperature for 1 h . The mixture was then concentrated and filtered through a plug of Celite and silica gel with 9:1:0.1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{4} \mathrm{OH}$. The complete removal of the t-butylcarbamate group was confirmed by mass spectroscopy (MS $\left.\left(\mathrm{DCI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 217(\mathrm{M}+\mathrm{H})^{+}\right)$, and the material was carried on.

To the intermediate free-amine (31.6 mmol) in 220 mL of tetrahydrofuran at $-30^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(5.43 \mathrm{~mL}, 38.8 \mathrm{mmol})$, followed by trifluoroacetic anhydride ($4.6 \mathrm{~mL}, 32.6 \mathrm{mmol}$). This mixture was stirred for 1.5 h as it warmed from -30 to $-10^{\circ} \mathrm{C}$. The mixture was quenched with 50 mL of saturated, aqueous NaHCO_{3} and was allowed to warm to ambient temperature. The layers were separated, and the aqueous layer was extracted with 3 $\times 20 \mathrm{~mL}$ of EtOAc. The combined organics were washed with 1 $\times 10 \mathrm{~mL}$ of brine and then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude material was dissolved in 100 mL of EtOAc and filtered through a plug of Celite and silica gel with EtOAc to give the title compound (21; 9.9 g , $>100 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 1.95(\mathrm{~m}, 2 \mathrm{H}), 2.54$ $(\mathrm{m}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=14.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{ddd}, J=13.9,3.4$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.05(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~m}$, $3 \mathrm{H}), 3.57$ (ddd, $J=13.3,6.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ (ddd, $J=13.5$, 9.1, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~m}, 5 \mathrm{H})$; MS $\left(\mathrm{DCI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ $313(\mathrm{M}+\mathrm{H})^{+}$.
(1S,6R)-3,8-Diaza-bicyclo[4.2.0]octane-8-carboxylic Acid tertButyl Ester (7). A mixture of 21 ($\sim 31.6 \mathrm{mmol}$), di- t-butyldicarbonate ($7.7 \mathrm{~g}, 35.3 \mathrm{mmol}$), and wet $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(10 \mathrm{wt} \%, 2.1 \mathrm{~g})$ in 125 mL of EtOAc was shaken under a 60 psi atmosphere of H_{2} for 16.5 h at $50^{\circ} \mathrm{C}$. The material was filtered and concentrated under
reduced pressure to give a quantitative amount of the intermediate (1S,6R)-3-(2,2,2-trifluoro-acetyl)-3,8-diaza-bicyclo[4.2.0]octane-8carboxylic acid tert-butyl ester, which was used directly below (MS $\left.\left(\mathrm{DCI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 326\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right)$.

To a solution of the ($1 S, 6 R$)-3-(2,2,2-trifluoro-acetyl)-3,8-diazabicyclo[4.2.0] octane-8-carboxylic acid tert-butyl ester (31.6 mmol) in 150 mL of $\mathrm{CH}_{3} \mathrm{OH}$ and 30 mL of $\mathrm{H}_{2} \mathrm{O}$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ (5.1 $\mathrm{g}, 37.2 \mathrm{mmol}$). This mixture was stirred at ambient temperature for 16 h and then concentrated under reduced pressure. The crude material was filtered through a plug of Celite and silica gel with 9:1:0.1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NH}_{4} \mathrm{OH}$. The still crude material was purified via column chromatography (9:1:0.1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} /$ $\mathrm{NH}_{4} \mathrm{OH}$) to give 6.6 g of the title compound 7 ($31 \mathrm{mmol}, 98 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H})$, $2.15(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 2.91$ (ddd, $J=13.0,8.6,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.09(\mathrm{dd}, J=14.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=14.2$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=8.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{DCI} / \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 213(\mathrm{M}+\mathrm{H})^{+}$.

Representative Procedures: (1S,6R)-3-(5-Bromo-pyridin-3-yl)-3,8-diaza-bicyclo[4.2.0]octane Fumarate (27). BuchwaldHartwig Coupling: A mixture of tris(dibenzylideneacetone)dipalladium $\left(\mathrm{Pd}_{2}(\mathrm{dba})_{3}, 65 \mathrm{mg}, 0.071 \mathrm{mmol}\right.$; Strem) and 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP, $73 \mathrm{mg}, 0.12 \mathrm{mmol}$; Strem) in 5 mL of PhCH_{3} was warmed to $85^{\circ} \mathrm{C}$ for 15 min . This mixture was added via cannula to a solution of $7(0.50 \mathrm{~g}, 2.4 \mathrm{mmol})$ and 3,5 -dibromopyridine $(0.73 \mathrm{~g}, 3.1 \mathrm{mmol})$ in 30 mL of PhCH_{3} at ambient temperature. $\mathrm{NaO} t$ - $\mathrm{Bu}(0.34 \mathrm{~g}, 3.53 \mathrm{mmol})$ was added, and the mixture was warmed to $80^{\circ} \mathrm{C}$ and allowed to stir for 16 h . The reaction mixture was then concentrated under reduced pressure and purified via column chromatography (50% hexanes/EtOAc) to give ($1 S, 6 R$)-3-(5-bromo-pyridin-3-yl)-3,8-diaza-bicyclo[4.2.0]-octane-8-carboxylic acid tert-butyl ester $(0.55 \mathrm{~g}, 1.5 \mathrm{mmol}, 63 \%$ yield). Data for intermediate: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.31$ $(\mathrm{s}, 9 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~m}, 2 \mathrm{H})$, $3.71(\mathrm{dt}, J=12.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 8.04$ (s, 1H); MS (DCI/ NH_{3}) m/z $190(\mathrm{M}+\mathrm{H})^{+}$.

Removal of \boldsymbol{t}-Butylcarbamate Group: To the coupled product (1S,6R)-3-(5-bromo-pyridin-3-yl)-3,8-diaza-bicyclo[4.2.0]octane-8carboxylic acid tert-butyl ester $(0.26 \mathrm{~g}, 0.71 \mathrm{mmol})$ in 6 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ was added 4 mL of trifluoroacetic acid. The mixture was allowed to warm to ambient temperature. After stirring for 2 h, the mixture was concentrated under reduced pressure and was purified via column chromatography (9:1:0.1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} /$ $\left.\mathrm{NH}_{4} \mathrm{OH}\right)$ to give the free amine, $(1 S, 6 R)$-3-(5-bromo-pyridin-3-yl)-3,8-diaza-bicyclo[4.2.0]octane, which was directly converted to the corresponding salt.

Salt Formation: To the free amine (0.71 mmol) in 5 mL of $10 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{Et}_{2} \mathrm{O}$ was added fumaric acid ($82 \mathrm{mg}, 0.71 \mathrm{mmol}$) in 2 mL of $10 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{Et}_{2} \mathrm{O}$. The resulting precipitate was isolated via filtration to give $27(0.12 \mathrm{~g}, 0.31 \mathrm{mmol}, 44 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 2.02(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 3.16$ $(\mathrm{m}, 1 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=14.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~m}$, $3 \mathrm{H}), 4.17(\mathrm{dd}, J=11.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dt}, J=9.2,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.64(\mathrm{~s}, 2 \mathrm{H}), 7.49(\mathrm{dd}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 8.15(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{DCI} / \mathrm{NH}_{3}\right) \mathrm{m} / z .268,270(\mathrm{M}+$ $\mathrm{H})^{+}$; Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BrN}_{3} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}$, H , N.
(1S,6R)-3-(5,6-Dibromo-pyridin-3-yl)-3,8-diaza-bicyclo[4.2.0]octane Fumarate (31). The intermediate from the coupling of 7 with dibromopyridine, ($1 S, 6 R$)-3-(5-bromo-pyridin-3-yl)-3,8-diaza-bicyclo[4.2.0]octane-8-carboxylic acid tert-butyl ester ($0.20 \mathrm{~g}, 0.54$ mmol) in 20 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $-40{ }^{\circ} \mathrm{C}$ was treated with N-bromosuccinimide (NBS, $96 \mathrm{mg}, 0.54 \mathrm{mmol}$). This mixture was stirred at $-40^{\circ} \mathrm{C}$ for 1.5 h , then quenched with 5 mL of $\mathrm{H}_{2} \mathrm{O}$, and allowed to warm to ambient temperature. The layers were separated, and the aqueous layer was extracted with $3 \times 5 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure, and purified via column chromatography (50% hexanes/EtOAc) to give $0.23 \mathrm{~g}(1 S, 6 R)-3-$ (5,6-dibromo-pyridin-3-yl)-3,8-diaza-bicyclo[4.2.0]octane-8-carboxylic acid tert-butyl ester ($0.51 \mathrm{mmol}, 95 \%$ yield, MS (DCI/
$\left.\left.\mathrm{NH}_{3}\right) m / z 448(\mathrm{M}+\mathrm{H})^{+}\right)$. This material was deprotected and its fumarate salt formed as described for $\mathbf{2 5}$ to give $\mathbf{3 1}(0.107 \mathrm{~g}, 0.22$ mmol, 43% yield). ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 2.02(\mathrm{~m}, 1 \mathrm{H})$, $2.22(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=14.6,3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 3 \mathrm{H}), 4.17(\mathrm{dd}, J=11.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dt}$, $J=9.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.98$ $(\mathrm{d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{DCI} / \mathrm{NH}_{3}\right) \mathrm{m} / z 348(\mathrm{M}+\mathrm{H})^{+}$; Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{~N}_{3} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Acknowledgment. The authors would like to thank John Malysz and Michael Dart for assistance with the preparation of this manuscript.

Supporting Information Available: Elemental analysis for all final compounds, experimental information and data for compounds 22-26, 28-30, and 32-71, X-ray data for ent-14, and ${ }^{1} \mathrm{H}$ NMR spectra for representative compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) (a) Williams, M.; Arneric, S. P. Beyond the Tobacco Debate: Dissecting out the Therapeutic Potential of Nicotine. Exp. Opin. Invest. Drugs 1996, 5, 1035-1045. (b) Lindstrom, J. Nicotinic Acetylcholine Receptors in Health and Disease. Mol. Neurobiol. 1997, 15, 193-222. (c) Paterson, D.; Nordberg, A. Neuronal Nicotinic Receptors in the Human Brain. Prog. Neurobiol. 2000, 61, 75-111.
(2) (a) Davis, L.; Pollock, L. J.; Stone, T. T. Visceral Pain. Surg. Gynecol. Obstet. 1932, 55, 418-426. (b) Tripathi, H. L.; Martin, B. R.; Aceto, M. D. Nicotine-Induced Antinociception in Rats and Mice: Correlation with Nicotine Brain Levels. J. Pharmacol. Exp. Ther. 1982, 221, 91-96.
(3) (a) Spande, T. F.; Garraffo, H. M.; Edwards, M. W.; Yeh, H. J. C.; Pannell, L.; Daly, J. W. Epibatidine: A Novel (Chloropyridyl)Azabicycloheptane with Potent Analgesic Activity from an Ecuadorian Frog. J. Am. Chem. Soc. 1992, 114, 3475-3478. (b) Badio, B.; Daly, J. W. Epibatidine, a Potent Analgetic and Nicotinic Agonist. Mol. Pharmacol. 1994, 45, 563-569. (c) Daly, J. W.; Garraffo, H. M.; Spande, T. F.; Decker, M. W.; Sullivan, J. P.; Williams, M. Alkaloids From Frog Skin: the Discovery of Epibatidine and the Potential for Developing Novel Non-Opiod Analgesics. Nat. Prod. Rep. 2000, 17, 131-135.
(4) Sullivan, J. P.; Briggs, C. A.; Donnelly-Roberts, D.; Brioni, J. D.; Radek, R. J.; McKenna, D. G.; Campbell, J. E.; Arneric, S. P.; Decker, M. W.; Bannon, A. W. (\pm)-Epibatidine Can Differentially Evoke Responses Mediated by Putative Subtypes of Nicotinic Acetylcholine Receptors (nAChRs). Med. Chem. Res. 1994, 4, 502516.
(5) Bannon, A. W.; Decker, M. W.; Holladay, M. W.; Curzon, P.; Donnelly-Roberts, D.; Puttfarcken, P. S.; Bitner, R. S.; Diaz, A.; Dickenson, A. H.; Porsolt, R. D.; Williams, M.; Arneric, S. P. BroadSpectrum, Non-Opiod Analgesic Activity by Selective Modulation of Neuronal Nicotinic Acetylcholine Receptors. Science 1998, 279, 77-81.
(6) (a) Holladay, M. W.; Wasicak, J. T.; Lin, N.-H.; He, Y.; Ryther, K. B.; Bannon, A. W.; Buckley, M. J.; Kim, D. J. B.; Decker, M. W.; Anderson, D. J.; Cambell, J. E.; Kuntzweiler, T. A.; DonnellyRoberts, D. L.; Piattoni-Kaplan, M.; Briggs, C. A.; Williams, M.; Arneric, S. P. Identification and Initial Structure-Activity Relationships of (R)-5-(2-Azetidinylmethoxy)-2-chloropyridine (ABT-594), a Potent Orally Active, Non-Opiate Analgesic Agent Acting Via Neuronal Nicotinic Acetylcholine Receptors. J. Med. Chem. 1998, 41, 407-412. (b) Decker, M. W.; Curzon, P.; Holladay, M. W.; Nikkel, A. L.; Bitner, R. S.; Bannon, A. W.; Donnelly-Roberts, D. L.; Puttfarcken, P. S.; Kuntzweiler, T. A.; Briggs, C. A.; Williams, M.; Arneric, S. P. The Role of Neuronal Nicotinic Acetylcholine Receptors in Antinociception: Effects of ABT-594. J. Physiol. 1998, 92, 221-224. (c) Sorbera, L. A.; Revel, L.; Leeson, P. A.; Castañer, J. ABT-594. Drugs Future 2001, 26, 927-934.
(7) (a) Donnelly-Roberts, D. L.; Puttfarcken, P. S.; Kuntzweiler, T. A.; Briggs, C. A.; Anderson, D. J.; Campbell, J. E.; Piattoni-Kaplen, M.; McKenna, D. G.; Wasicak, J. T.; Holladay, M. W.; Williams, M.; Arneric, S. P. ABT-594 [(R)-5-(2-Azetidinylmethoxy)-2-Chloropyridine]: A Novel, Orally Effective Analgesic Acting via Neuronal Nicotinic Acetylcholine Receptors: I. In Vitro Characterization. J. Pharmacol. Exp. Ther. 1998, 285, 777-786. (b) Minta, A.; Kao, R.; Tsien, J. Fluorescent Indicators for Cytosolic Calcium Based on Rhodamine and Fluorescein Chromophores. J. Biol. Chem. 1989, 264, 8171-8180.
(8) Bannon, A. W.; Decker, M. W.; Curzon, P.; Buckley, M. J.; Kim, D. J. B.; Radek, R. J.; Lynch, J. K.; Wasicak, J. T.; Lin, N.-H.; Arnold, W. H.; Holladay, M. W.; Williams, M.; Arneric, S. P. ABT594 [(R)-5-(2-Azetidinylmethoxy)-2-Chloropyridine]: A Novel, Orally Effective Analgesic Agent Acting via Neuronal Nicotinic Acetylcholine Receptors: II. In Vivo Characterization. J. Pharmacol. Exp. Ther. 1998, 285, 787-794.
(9) (a) Marubio, L. M.; Arroyo-Jimenez, M. del-M.; Cordero-Erausquin, M.; Léna, C.; Le Novère, N.; d'Exaerde, A. de-K.; Huchet, M.; Damaj, M. I.; Changeux, J-P. Reduced Antinociception in Mice Lacking Neuronal Nicotinic Receptor Subunits. Nature 1999, 398 , 805-810. (b) Bitner, R. S.; Nikkel, A. L.; Curzon, P.; DonnellyRoberts, D. L.; Puttfarcken, P. S.; Namovic, M.; Jacobs, I. C.; Meyer, M. D.; Decker, M. W. Reduced nicotinic receptor-mediated antinociception following in vivo antisense knock-down in rat. Brain Res. 2000, 871, 66-74.
(10) Sullivan, J. P.; Bannon, A. W. Epibatidine: Pharmacological Properties of a Novel Nicotinic Acetylchloine Receptor Agonist and Analgesic Agent. CNS Drug Rev. 1996, 2, 21-39.
(11) (a) Schrimpf, M. R.; Sippy, K. B.; Daanen, J. F.; Ryther, K. B.; Ji, J. Heterocyclic Substituted Aminoazacycles Useful as Central Nervous System Agents. PCT Int. Appl. WO 00/71534, 2000. (b) Schrimpf, M. R.; Tietje, K. R.; Toupence, R. B.; Ji, J.; Basha, A.; Bunnelle, W. H.; Daanen, J. F.; Pace, J. M.; Sippy, K. B. Diazabicyclic Central Nervous System Agents. PCT Int. Appl. WO 01/81347, 2001.
(12) (a) Muci, A. R.; Buchwald, S. L. Practical Palladium Catalysts for C-N and C-O Bond Formation Top. Curr. Chem., 2002, 219, 131209. (b) Hartwig, J. F. Carbon-Heteroatom Bond-Forming Reductive Eliminations of Amines, Ethers, and Sulfides. Acc. Chem. Res. 1998, 31, 852-860.
(13) Xu, D.; Prasad, K.; Repiè, O.; Blacklock, T. J. A Practical Synthesis of Enantiopure Ethyl cis-2-Amino-1-Cyclohexanecarboxylate via Asymmetric Reductive Amination Methodology. Tetrahedron: Asymmetry 1997, 8, 1445-1451.
(14) Fukayama, T.; Jow, C.-K.; Cheung, M. Tetrahedron Lett. 1995, 36, 6373-6374.
(15) Holladay, M. W.; Bai, H.; Li, Y.; Lin, N.-H.; Daanen, J. F.; Ryther, K. B.; Wasicak, J. T.; Kincaid, J. F.; He, Y.; Hettinger, A.-M.; Huang, P.; Anderson, D. J.; Bannon, A. W.; Buckley, M. J.; Campbell, J. E.; Donnelly-Roberts, D. L.; Gunther, K. L.; Kim, D. J. B.; Kuntxweiler, T. A.; Sullivan, J. P.; Decker, M. W.; Areneric, S. P. Structure-Activity Studies Related to ABT-594, a Potent Nonopioid Analgesic Agent: Effect of Pyridine and Azetidine Ring Substitutions on Nicotinic Acetylcholine Receptor Binding Affinity and Analgesic Activity in Mice. Bioorg. Med. Chem. Lett. 1998, 8, 2797-2802.
(16) Bunnelle, W. H.; Dart, M. J.; Schrimpf, M. R. Design of Ligands for the Nicotinic Acetylcholine Receptors: The Quest for Selectivity. Curr. Top. Med. Chem. 2004, 4, 299-334.
(17) (a) Lin, N.-H.; Gunn, D. E.; Li, Y.; He, Y.; Bai, H.; Ryther, K. B.; Kuntzweiler, T. A.; Donnelly-Roberts, D. L.; Anderson, D. J.; Campbell, J. E.; Sullivan, J. P.; Arneric, S. P.; Holladay, M. W. Synthesis and Structure-Activity Relationships of Pyridine-Modified Analogs of 3-[2-((S)-Pyrrolidinyl)methoxy]pyridine, A-84543, a Potent Nicotinic Acetylcholine Receptor Agonist. Bioorg. Med. Chem. Lett. 1998, 8, 249-254. (b) Lin, N.-H.; Li, Y.; He, Y.; Holladay, M. W.; Kuntzweiler, T. A.; Anderson, D. J.; Campbell, J. E.; Arneric, S. P. Synthesis and Structure-Activity Relationships of 5-Substituted Pyridine Analogues of 3-[2-((S)-Pyrrolidinyl)methoxy]pyridine, A-84543: A Potent Nicotinic Receptor Ligand. Bioorg. Med. Chem. Lett. 2001, 11, 631-633.
(18) Schmitt, J. D. Exploring the Nature of Molecular Recognition in Nicotinic Acetylcholine Receptors. Curr. Med. Chem. 2000, 7, $749-$ 800. (b) Wang, D. X.; Booth, H.; Lerner-Marmarosh, N.; Osdene, T. S.; Abood, L. Structure-Activity Relationships for Nicotine Analogs Comparing Competition for [3H]-Nicotine Binding and Psychotropic Potency. Drug Dev. Res. 1998, 45, 10-16.
(19) Lin, N.-H.; Abreo, M. A.; Gunn, D. E.; Lebold, S. A.; Lee, E. L.; Wasicak, J. T.; Hettinger, A.-M.; Daanen, J. F.; Garvey, D. S.; Campbell, J. E.; Sullivan, J. P.; Williams, M.; Arneric, S. P. Structure-Activity Studies on a Novel Series of Cholinergic Channel Activators Based on a Heteroaryl Ether Framework. Bioorg. Med. Chem. Lett. 1999, 9, 2747-2752.
(20) Holladay, M. W.; Abreo, M. A.; Gunn, D. E.; Lin, N.-H.; Garvey, D. S.; Ryther, K.; Lebold, S. A.; Elliott, R. L.; He, Y.; Wasicak, J. T.; Bai, H.; Dart, M. J.; Ehrlich, P. P.; Li, Y.; Kincaid, J. F.; Schkeryantz, J.; Lynch, J. K. Heterocyclic Ether and Thioether Compounds Useful in Controlling Chemical Synaptic Transmission. PCT Int. Appl. WO 99/32480, 1999.
(21) (a) Peters, D.; Olsen, G. M.; Nielsen, S. F.; Nielsen, E. Ø. Heteroaryl Diazacycloalkanes as Cholinergic Ligands at Nicotinic Acetylcholine Receptors. PCT Int. Appl. WO 99/21834, 1999. (b) Toma, L.; Quadrelli, P.; Bunnelle, W. H.; Andrson, D. J.; Meyer, M. D.; Cignarella, G.; Gelain, A.; Barlocco, D. 6-Chloropyridazin-3-yl Derivatives Active as Nicotinic Agents: Synthesis, Binding, and Modeling Studies. J. Med. Chem. 2002, 45, 4011-4017.
(22) Bannon, A. W.; Gunther, K. L.; Decker, M. W. Is Epibatidine Really Analgesic? Dissociation of the Activity, Temperature, and Analgesic Effects of (\pm)-Epibatidine. Pharmacol., Biochem. Behav. 1995, 51, 693-698.
(23) (a) Pabreza, L. A.; Dhawan, S.; Kellar, K. J. [3H]-Cytisine Binding to Nicotinic Cholinergic Receptors in Brain. Mol. Pharmacol. 1990, 39, 9-12. (b) Anderson, D. J.; Williams, M.; Arneric, S. P.; Pauly, J. R.; Rotert, G. A.; Raszkiewicz, J. L.; Wasicak, J. T.; Sullivan, J. P. Characterization of $\left[{ }^{3} \mathrm{H}\right]$ ABT-418: A Novel Cholinergic Channel Ligand. J. Pharmacol. Exp. Ther. 1995, 273, 1434-1441.

JM060846Z

[^0]: * To whom correspondence should be addressed. Tel.: 847-937-0721. Fax: 847-937-9195. E-mail: jennifer.frost@abbott.com.
 \dagger Abbott Laboratories.
 $\stackrel{\text { NeuroSearch A/S. }}{ }$

